Skip to main content

Graphics / Hilbert

Use turtle graphics recursively to draw Hilbert curves.

from h2o_wave import ui, main, app, Q, graphics as g


def hilbert(t: g.Turtle, width: float, depth: int, reverse=False): # recursive
angle = -90 if reverse else 90

if depth == 0:
t.f(width).r(angle).f(width).r(angle).f(width)
return

side = width * ((2 ** depth) - 1) / float((2 ** (depth + 1)) - 1)
edge = width - 2 * side

t.r(angle)
hilbert(t, side, depth - 1, not reverse)
t.r(angle).f(edge)
hilbert(t, side, depth - 1, reverse)
t.l(angle).f(edge).l(angle)
hilbert(t, side, depth - 1, reverse)
t.f(edge).r(angle)
hilbert(t, side, depth - 1, not reverse)
t.r(angle)


def make_hilbert_curve(width: float, depth: int):
t = g.turtle().f(0).pd()
hilbert(t, width, depth)
return t.d()


@app('/demo')
async def serve(q: Q):
hilbert_curve = make_hilbert_curve(300, q.args.depth or 5)

if not q.client.initialized:
q.page['curve'] = ui.graphics_card(
box='1 1 4 6', view_box='0 0 300 300', width='100%', height='100%',
scene=g.scene(
hilbert_curve=g.path(d=hilbert_curve, fill='none', stroke='#333')
),
)
q.page['form'] = ui.form_card(
box='1 7 4 1', items=[
ui.slider(name='depth', label='Play with this Hilbert curve!', min=1, max=6, value=5, trigger=True),
],
)
q.client.initialized = True
else:
g.draw(q.page['curve'].scene.hilbert_curve, d=hilbert_curve)

await q.page.save()

Tags:  graphics

By using this website you agree to our use of cookies.

Read H2O.ai’s privacy policy.
X